## Carbonyl propargylation by 1-substituted prop-2-ynyl mesylates and carbonyl allenylation by 3-substituted prop-2-ynyl mesylates with tin(II) iodide and tetrabutylammonium iodide

## Yoshiro Masuyama,\*† Akiko Watabe, Akihiro Ito and Yasuhiko Kurusu

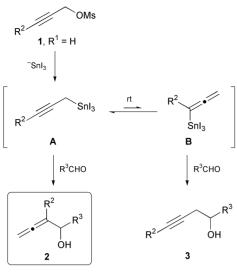
Department of Chemistry, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan

Received (in Cambridge, UK) 14th August 2000, Accepted 5th September 2000 First published as an Advance Article on the web 28th September 2000

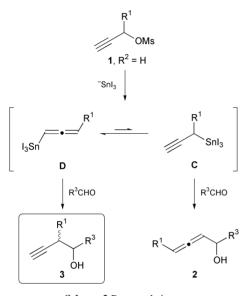
1-Substituted prop-2-ynyl mesylates cause propargylation of aldehydes with  $tin(\pi)$  iodide, tetrabutylammonium iodide and sodium iodide in 1,3-dimethylimidazolidin-2-one to produce 2-substituted but-3-yn-1-ols, while 3-substituted prop-2-ynyl mesylates cause allenylation of aldehydes under the same conditions as those of the propargylation by 1-substituted prop-2-ynyl mesylates to produce 2-substituted buta-2,3-dien-1-ols.

Table 1 Allenylation by prop-2-ynyl mesylate with SnI2 and TBAIa

| R <sup>3</sup> |                                                | Time/h | Yield (%)<br>2 + 3 | b<br>2:3 <sup>c</sup> |
|----------------|------------------------------------------------|--------|--------------------|-----------------------|
| -              | C <sub>6</sub> H <sub>5</sub>                  | 45     | 85                 | 78:22                 |
|                | ClC <sub>6</sub> H <sub>4</sub>                | 48     | 80                 | 75:25                 |
|                | CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub> | 70     | 74                 | 78:22                 |
|                | $CH_3(CH_2)_5$                                 | 71     | 66                 | 66:34                 |
|                | c-C <sub>6</sub> H <sub>11</sub>               | 72     | 68                 | 81:19                 |
|                | The meeting of more                            |        | 1-4- (1 5          | 1)                    |


<sup>*a*</sup> The reaction of prop-2-ynyl mesylate (1.5 mmol) with aldehydes (1.0 mmol) was carried out using SnI<sub>2</sub> (1.5 mmol), TBAI (0.10 mmol) and NaI (1.5 mmol) in DMI (3 ml) at 10 °C. <sup>*b*</sup> Yields of a mixture of **2** and **3**. <sup>*c*</sup> The ratio was determined by <sup>1</sup>H NMR analysis (JEOL  $\Lambda$ -500).

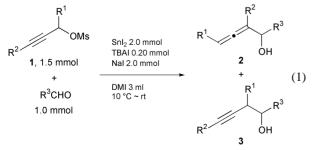
Alkynes and allenes have formed an attractive chemistry for high reactivities with metal complexes or reagents.1 Thus, the preparation of alkynes and allenes becomes an important theme. Barbier-type carbonyl propargylation or allenylation with propargylic halides is one of the most convenient methods for the introduction of propargyl or allenyl functions.<sup>2–7</sup> However, it is not easy to control selectivity between Barbier-type propargylation and allenylation with propargylic halides. We have established both selective propargylation and allenylation by 1-haloprop-2-yne with tin(II) halide and tetrabutylammonium halide (TBAX) through choice of reaction conditions: carbonyl propargylation occurs with 1-bromoprop-2-yne, SnCl<sub>2</sub> and TBABr at 50 °C in water, while carbonyl allenylation occurs with 1-chloroprop-2-yne, SnI<sub>2</sub> and TBAI at 25 °C in 1,3-dimethylimidazolidin-2-one (DMI).8 1H NMR observations (JEOL  $\Lambda$ -500) have confirmed that prop-2-ynyltriiodotin (propargyltin), derived from 1-chloroprop-2-yne with SnI<sub>2</sub> and Nal at 25 °C in DMF-d7, does not isomerize to propa-1,2-dienyltriiodotin (allenyltin) at 25 °C but does so at 50 °C.8,9 We thus hoped that this kind of isomerization of propargyltin to allenyltin would be prohibited by the steric effect of a 3-substituent in 1-haloprop-2-ynes and be promoted by the steric effect of a 1-substituent in 1-haloprop-2-ynes.<sup>10</sup> We here


Table 2 Selective carbonyl propargylation or allenylation mediated by steric effects<sup>a</sup>

| R1              | R <sup>2</sup>  | R <sup>3</sup>                                                | Time/h | Yield $(\%)^b$<br>2 + 3 | 2:3 <sup>c</sup> | 3 syn: antic |
|-----------------|-----------------|---------------------------------------------------------------|--------|-------------------------|------------------|--------------|
| Н               | CH <sub>3</sub> | C <sub>6</sub> H <sub>5</sub>                                 | 48     | 58                      | ~100:0           |              |
| Н               | $CH_3$          | ClC <sub>6</sub> H <sub>4</sub>                               | 47     | 65                      | ~100:0           |              |
| Н               | $CH_3$          | $CH_3C_6H_4$                                                  | 55     | 52                      | ~100:0           |              |
| Н               | $CH_3$          | C <sub>6</sub> H <sub>5</sub> CH=CH                           | 71     | $21^d$                  | 94:6             |              |
| Н               | $CH_3$          | C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> CH <sub>2</sub> | 51     | 62                      | 90:10            |              |
| Н               | $CH_3$          | CH <sub>2</sub> =CH(CH <sub>2</sub> ) <sub>8</sub>            | 50     | 57                      | 89:11            |              |
| Н               | $CH_3$          | $CH_3(CH_2)_5$                                                | 67     | 65                      | 90:10            |              |
| Н               | CH <sub>3</sub> | $c - C_6 H_{11}$                                              | 79     | 41                      | 84:16            |              |
| Н               | $C_6H_5$        | $C_6H_5$                                                      | 71     | 81                      | ~100:0           |              |
| Н               | $C_6H_5$        | ClC <sub>6</sub> H <sub>4</sub>                               | 63     | 84                      | ~100:0           |              |
| Н               | $C_6H_5$        | CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub>                 | 90     | 76                      | ~100:0           |              |
| Н               | $C_6H_5$        | C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> CH <sub>2</sub> | 79     | 56                      | 90:10            |              |
| Н               | $C_6H_5$        | $CH_2 = CH(CH_2)_8$                                           | 75     | 32                      | 98:2             |              |
| Н               | $C_6H_5$        | $CH_3(CH_2)_5$                                                | 70     | 35                      | 98:2             |              |
| Н               | $C_6H_5$        | c-C <sub>6</sub> H <sub>11</sub>                              | 71     | 48                      | 93:7             |              |
| CH <sub>3</sub> | Н               | C <sub>6</sub> H <sub>5</sub>                                 | 71     | 71                      | 12:88            | 49:51        |
| CH <sub>3</sub> | Н               | ClC <sub>6</sub> H <sub>4</sub>                               | 79     | 83                      | 6:94             | 48:52        |
| CH <sub>3</sub> | Н               | CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub>                 | 75     | 65                      | 6:94             | 47:53        |
| CH <sub>3</sub> | Н               | 2-Furyl                                                       | 70     | 41                      | 0:~100           | 50:50        |
| CH <sub>3</sub> | Н               | C <sub>6</sub> H <sub>5</sub> CH=CH                           | 72     | 75                      | 0:~100           | 47:53        |
| CH <sub>3</sub> | Н               | C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> CH <sub>2</sub> | 70     | 66                      | 1:99             | 19:81        |
| CH <sub>3</sub> | Н               | $CH_2 = CH(CH_2)_8$                                           | 47     | 55                      | 1:99             | 26:74        |
| CH <sub>3</sub> | Н               | $CH_3(CH_2)_5$                                                | 71     | 48                      | 10:90            | 35:65        |
| CH <sub>3</sub> | Н               | c-C <sub>6</sub> H <sub>11</sub>                              | 70     | 44                      | 14:86            | e            |
| Pr              | Н               | $C_6H_5$                                                      | 75     | 66                      | 2:98             | 48:52        |
| Pr              | Н               | ClC <sub>6</sub> H <sub>4</sub>                               | 72     | 85                      | 1:99             | 50:50        |
| Pr              | Н               | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>5</sub>               | 75     | 41                      | 8:92             | 22:78        |

<sup>*a*</sup> The reaction of 1- or 3-substituted prop-2-ynyl mesylates (1.5 mmol) with aldehydes (1.0 mmol) was carried out using SnI<sub>2</sub> (2.0 mmol), TBAI (0.20 mmol) and NaI (2.0 mmol) in DMI (3 ml) at rt. <sup>*b*</sup> Yields of a mixture of **2** and **3**. <sup>*c*</sup> The ratios were determined by <sup>1</sup>H NMR analysis (JEOL  $\Lambda$ -500). For the ratio of *syn* to *anti*, see ref. 8. <sup>*d*</sup> The reaction was carried out in the presence of MS 4Å in THF. <sup>*e*</sup> The ratio was not confirmed.




Scheme 1 Allenylation.



Scheme 2 Propargylation.

report on selective Barbier-type carbonyl propargylation and allenylation mediated by steric effects, using the 1- or 3-substituted prop-2-ynyl mesylates<sup>‡</sup> as Barbier-type propargylating or allenylating reagents, rather than the more usual corresponding halides (1-haloprop-2-ynes), because the mesylates are superior to the halides for ease of preparation and the stability of propargylic substrates.<sup>11</sup>

The reaction of prop-2-ynyl mesylate (1;  $R^1$ ,  $R^2 = H$ ) with some aldehydes was carried out using  $SnI_2$ , TBAI and NaI under the same conditions as those reported for the carbonyl allenylation by 1-chloroprop-2-yne [eqn. (1)].<sup>8</sup> The results are



summarized in Table 1. Prop-2-ynyl mesylate ( $\mathbf{1}$ ;  $\mathbf{R}^1$ ,  $\mathbf{R}^2 = \mathbf{H}$ ) proved to be as available as 1-chloroprop-2-yne for the selective

carbonyl allenylation with SnI<sub>2</sub> and TBAI. Thus, we investigated whether the 1- or 3-substituents of prop-2-ynyl mesylates affect the selectivity between propargylation and allenvlation under the same conditions as those of prop-2-ynyl mesylate (1;  $R^1$ ,  $R^2 = H$ ) [eqn. (1)]. The results are summarized in Table 2. 3-Substituted prop-2-ynyl mesylates (1;  $R^1 = H$ ,  $R^2 = CH_3$  and  $R^1 = H, R^2 = C_6H_5$ ) caused the same allenylation of various aldehydes as that of  $1 (R^1, R^2 = H)$ . In particular, with aromatic aldehydes, only allenyl carbinols 2 were obtained. The reaction of cinnamaldehvde in DMI afforded 1-phenvlhexa-1.3-dien-5-one derivatives that were probably formed by the hydration of the corresponding allenyl carbinols 2 ( $R^2 = CH_3$ ,  $C_6H_5$ ) followed by dehydration.<sup>4,8</sup> 1-Substituted prop-2-ynyl mesylate (1;  $R^1 = CH_3$ ,  $R^2 = H$  and  $R^1 = Pr$ ,  $R^2 = H$ ) caused the preferential propargylation of various aldehydes. The selectivity for this propargylation was enhanced by the use of THF- $H_2O(1:1)$  as a solvent instead of DMI:  $R^1 = CH_3$ ,  $R^2 = H$ ,  $R^3$ =  $C_6H_5$ ; rt, 72 h; 92%, **2** : **3** = 0 : ~100, syn:anti 46:54.

A plausible mechanism for the allenylation is illustrated in Scheme 1. 3-Substituent R<sup>2</sup> (CH<sub>3</sub> or C<sub>6</sub>H<sub>5</sub>), being bulkier than H, probably prohibits propargyltin intermediate **A** from isomerizing to allenyltin intermediate **B**. Thus allenyl carbinols **2** are produced more selectively than in the allenylation by prop-2-ynyl mesylate (**1**; R<sup>1</sup>, R<sup>2</sup> = H), *via* nucleophilic addition of the propargyltin **A** at the  $\gamma$ -position.<sup>8</sup> A plausible mechanism for the propargylation is illustrated in Scheme 2. 1-Substituent R<sup>1</sup> (CH<sub>3</sub> or Pr) probably promotes the isomerization of the initially prepared propargyltin **C** to allenyltin **D**, even at room temperature, or mediates a direct preparation of allenyltin **D**.§ The allenyltin **D** then undergoes nucleophilic addition to aldehydes at the  $\gamma$ -position to afford homopropargyl alcohols **3**.

## Notes and references

† E-mail: y-masuya@hoffman.cc.sophia.ac.jp

<sup>‡</sup> The 1- or 3-substituted prop-2-ynyl mesylates were prepared from 1- or 3-substituted prop-2-yn-1-ols and methanesulfonyl chloride with triethylamine in ether on an ice-bath. 1-Phenylprop-2-ynyl mesylate was not prepared under the conditions described above: see I. S. Aidhen and R. Braslau, *Synth. Commun.*, 1994, **24**, 789.

§ It was shown by <sup>1</sup>H NMR analysis (JEOL A-500) that the reaction of 1-methylprop-2-ynyl mesylate with SnI<sub>2</sub> and NaI in DMF-d<sub>7</sub> produced 3-methylprop-1,2-dienyltriiodotin **D** (R<sup>1</sup> = CH<sub>3</sub>) at 25 °C;  $\delta$  1.73 (dd, J = 7.2, 2.6 Hz, 3H), 5.21 (quintet, J = 6.7 Hz, 1H), 6.09 (dq, J = 5.6, 2.6 Hz, 1H).

- Modern Acetylene Chemistry, ed. P. J. Stang and F. Diederich, VCH, Weinheim, 1995; H. Yamamoto, in Comprehensive Organic Synthesis, ed. I. Fleming and B. M. Trost, Pergamon Press, Oxford, 1991, vol. 2, p. 81; H. F. Schuster and G. M. Coppola, Allenes in Organic Synthesis, Wiley, New York, 1984.
- 2 T. Mukaiyama and T. Harada, Chem. Lett., 1981, 621.
- 3 G. P. Boldrini, E. Tagliavini, C. Trombini and A. Umani-Ronchi, J. Chem. Soc., Chem. Commun., 1986, 685.
- 4 M. Iyoda, Y. Kanao, M. Nishizaki and M. Oda, Bull. Chem. Soc. Jpn., 1989, 62, 3380.
- 5 A. Kundu, S. Prabhakar, M. Vairamani and S. Roy, Organometallics, 1999, 18, 2782.
- 6 H. Tanaka, T. Hamatani, S. Yamashita and S. Torii, *Chem. Lett.*, 1986, 1461.
- 7 K. Belyk, M. J. Rozema and P. Knochel, J. Org. Chem., 1992, 57, 4074.
- 8 Y. Masuyama, A. Ito, M. Fukuzawa, K. Terada and Y. Kurusu, *Chem. Commun.*, 1998, 2025.
- 9 J. A. Marshall, R. H. Yu and J. F. Perkins, J. Org. Chem., 1995, 60, 5550.
- 10 For selective formation of propargylmetals and allenylmetals utilizing steric effects, see: J. Nokami, T. Tamaoka, T. Koguchi and R. Okawara, *Chem. Lett.*, 1984, 1939; L.-J. Zhang, Y.-Z. Huang and Z.-H. Huang, *Tetrahedron Lett.*, 1991, **32**, 6579; S. Kobayashi and K. Nishio, *J. Am. Chem. Soc.*, 1995, **117**, 6392.
- 11 For selective propargylation by propargylic mesylates with Et<sub>2</sub>Zn or InI in the presence of Pd<sup>II</sup> catalysts, see: J. A. Marshall and N. D. Adams, *J. Org. Chem.*, 1999, **64**, 5201; J. A. Marshall and C. M. Grant, *J. Org. Chem.*, 1999, **64**, 8214.